Old capacitors present several types of problems for vintage radio restorers:
- their identification - nature and characteristic values
- their replacement with current components
- their eventual reforming (electrolytic capacitors)
The maximum acceptable leakage current of an electrolytic capacitor.
When restoring an old radio, electrolytic capacitors are the components that age the worst.
To test the health of filtering capacitors, one must be concerned with their leakage current rather than their ESR.
This leakage current must be measured under rated voltage conditions (150 to 450V). For this purpose, measurement and reforming devices are given here.
This leakage current must be measured under rated voltage conditions (150 to 450V). For this purpose, measurement and reforming devices are given here.
A tool to determine the maximum acceptable leakage current.
The tables above were established using the following empirical formula: \(I_{Max}= K . C_{\mu F} + 0,3\) where
the current is in mA. The small calculator is based on this empirical form.
This tool is based on a table of values found in the manual of a SPAGUE TO-05 capacitor tester. The
maximum leakage current for electrolytic capacitors is expressed as a function of capacitance and service voltage.
Opposite, you will find a small calculator.
Opposite, you will find a small calculator.
K | V DC |
0,01 | 3 - 100 |
0,02 | 101 - 250 |
0,025 | 251 - 350 |
0,04 | 351 - 500 |
The tables below are taken from the SPAGUE TO-05 documentation.
3 - 100VDC
C(µF) | ImA |
1 | 0,31 |
2 | 0,32 |
5 | 0,35 |
10 | 0,40 |
20 | 0,50 |
30 | 0,60 |
40 | 0,70 |
50 | 0,80 |
70 | 1,00 |
80 | 1,10 |
100 | 1,30 |
125 | 1,55 |
130 | 1,60 |
150 | 1,80 |
200 | 2,30 |
250 | 2,30 |
500 | 5,30 |
1000 | 10.00 |
1500 | 10,00 |
2000 | 10,00 |
3000 | 10,00 |
101 - 250VDC
C(µF) | ImA |
4 | 0,38 |
8 | 0,46 |
10 | 0,54 |
12 | 0,54 |
15 | 0,60 |
16 | 0,62 |
20 | 0,70 |
30 | 0,90 |
40 | 1,10 |
50 | 1,30 |
60 | 1,50 |
70 | 1,70 |
80 | 1,90 |
100 | 2,30 |
120 | 2,70 |
125 | 2,80 |
140 | 3,10 |
150 | 3,30 |
200 | 4,30 |
300 | 6,30 |
251 - 350VDC
C(µF) | ImA |
4 | 0,30 |
8 | 0,50 |
10 | 0,55 |
12 | 0,60 |
15 | 0,68 |
16 | 0,70 |
20 | 0,80 |
30 | 1,05 |
35 | 1,18 |
40 | 1,30 |
50 | 1,55 |
60 | 1,80 |
80 | 2,30 |
100 | 2,80 |
120 | 3,30 |
125 | 5,43 |
150 | 4,05 |
200 | 5,30 |
351 - 500VDC
C(µF) | ImA |
2 | 0,38 |
4 | 0,46 |
5 | 0,50 |
8 | 0,62 |
10 | 0,70 |
12 | 0,78 |
15 | 0,90 |
16 | 0,94 |
20 | 1,10 |
25 | 1,30 |
30 | 1,50 |
40 | 1,90 |
50 | 2,30 |
60 | 2,70 |
80 | 3,50 |
90 | 3,90 |
125 | 5,30 |
Sources and references
[1] R. Besson, "Technologie des composants électroniques, Tome 1, Edition Radio, Paris, 1977.
[2] SPRAGUE, Operating manual, Model TO-5, Capacitor analyzer and turns ratio bridge, Sprague products company, 1960